

State of Birds in the Netherlands 2025

In this State of Birds

The state of birds.....	4
Persistent negative trends among breeding birds in the Wadden Sea.....	6
Disappointing breeding results for Arctic swans and geese.....	8
Why are Barn Swallows declining?	9
The state of our birds.....	11
The Netherlands or elsewhere in Europe – what's best?	12
Trends in seabirds	16
Counting series over time.....	18
Common Swifts in motion	22
Waterbirds and the East Atlantic Flyway.....	24
Leave or stay, how flexible is the 'Dutch' Barnacle Goose?	26
2026 will be the <i>Year of the Little Owl</i>	29
How the Blackbird's song fell silent.....	30
Acknowledgements, colophon and sources.....	31

▲ Barnacle Geese departing together from their night roost.
Photo: Thijs Glastra

Borderless cooperation

Birds are important indicators of the state of nature and biodiversity. Since the 1980s, Sovon has been organising national and regional bird counts. Since the turn of the century, these counts, together with the monitoring networks for other species groups, have been part of the Ecological Monitoring Network (NEM). Long-term count series based on standardised methods provide insight into Dutch biodiversity. They therefore form an important basis for the development and evaluation of both nature policy and nature management.

Every year, we use these counts to assess the status of birds in the Netherlands. At a glance, you can see the trends per habitat for both breeding birds and migratory and wintering birds. In the rest of this State of Birds, we delve deeper into the explanations for these trends. These explanations often lie beyond the Netherlands. A significant part of 'our' populations is part of a larger, international story. Cross-border cooperation is therefore crucial to gain more insight into the pressure factors that can explain national trends.

Sovon is part of the Pan-European Common Bird Monitoring Scheme (PECBMS). This monitoring focuses on common breeding birds and brings together breeding bird counts from thirty European countries. For 168 species, this provides reliable European trends and sometimes surprising insights. Is the Netherlands doing worse or better than the rest of Europe?

The East Atlantic Flyway (EAF) is a crucial route for Dutch waterbirds. Sovon has been coordinating monitoring along this migration route since 2013. As a partner in the Wadden Sea Flyway Initiative (WSFI), we work together with Wetlands International and BirdLife International to improve the monitoring of coastal waterbirds. Waterbirds are good indicators of ecosystem health: they are easy to count and respond quickly to environmental changes.

These organisations not only collect annual data on the size and trends of waterbird populations, but also on environmental conditions (pressure factors and conservation measures) at various locations. Once every three years, all areas along the entire migration route are counted. The next comprehensive census will take place in January 2026. This is therefore a good moment to provide insight into the results of the last census in this State of Birds.

In addition to these international stories, the State of Birds offers many more fascinating insights, based on the fieldwork of thousands of observers in the Netherlands and elsewhere. Enjoy reading!

Dianne Nijland

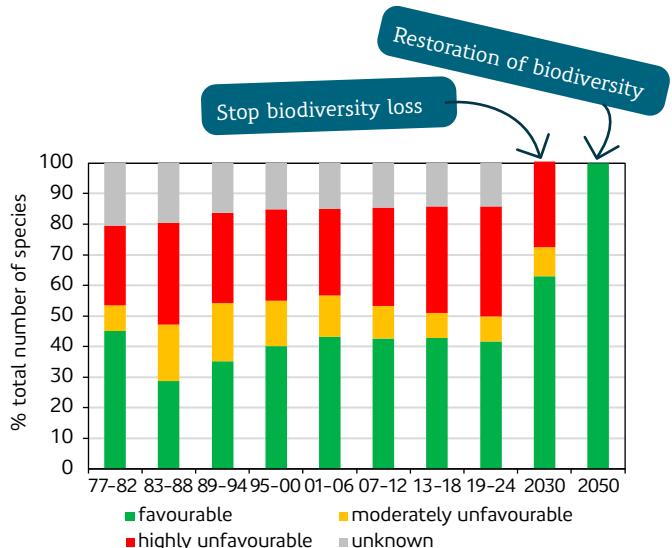
managing director Sovon Dutch Centre for Field Ornithology

2025

The state of birds

Our bird count projects enable us to assess the status of many bird populations at various stages of their life cycle – breeding, migration, wintering. The population trends we identify are used, among other things, to determine whether a species belongs on the Red List, but also to assess its conservation status.

The so-called Conservation Status (CS) is a concept that originates from the EU Bird Directive, which has been in force in Europe since 1979. For all native bird species, the distribution area, population development, and the size and quality of the habitat are examined. Based on this, an assessment is made of the future perspective. An important difference with the Red List is that we compare the breeding and/or winter numbers with a species-specific 'favourable reference value'. If the species is above this value in terms of numbers and there is no long-term negative trend, the situation can be considered favourable. Favourable means that a population is healthy and can occupy its natural range in optimal densities.


For all species, we assess whether the CS is favourable, moderately unfavourable or highly unfavourable. This CS is determined periodically. However, based on population trends, we can make an annual comparison with the favourable reference value, which is a good indication of the CS. When presenting the Dutch National Dashboard for Biodiversity in 2024, we showed the situation reconstructed from the entry into force of the Birds Directive in 1979, to 2018. We have now also processed data from recent years. This includes breeding populations, migratory populations and winter populations – so a species may occur several times.

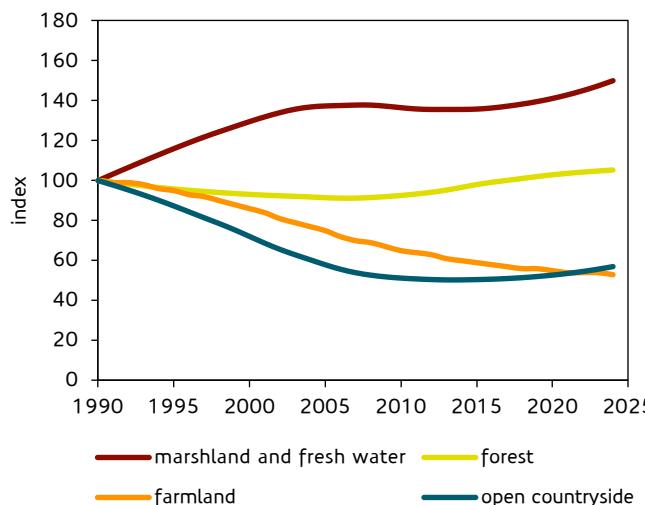
This new assessment shows that the situation has remained unchanged compared to 2018 (see figure). For the more than 400 bird populations assessed, we see no increase in the proportion rated as favourable (42%), while the number of species in the very unfavourable category has slightly increased (35% versus 32%). The proportion classified as unknown, which is quite large, mainly relates to the situation of migratory birds. This is mainly due to the lack of data on many birds that are not water-bound, such as the Tree Pipit and White Wagtail. Unfortunately, we must conclude that we are still a long way from the international targets set for 2030 and 2050.

Trends in breeding birds per habitat

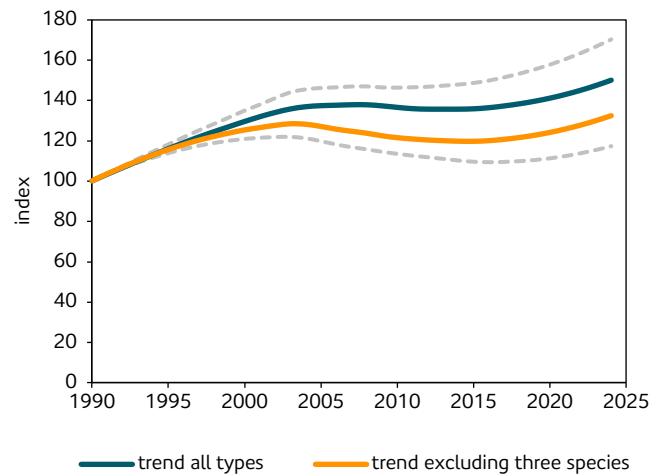
To monitor the development of Dutch bird populations in different habitats, Statistics Netherlands (CBS) compiles summary indicators based on the breeding bird counts coordinated by Sovon. Since 1990, birds of open countryside and farmland have been declining. Forest breeding birds have remained more or less stable and appear to be increasing slightly recently. Birds of marshland and freshwater habitats have shown an increase over the entire period.

The indicators provide an initial impression of the general trend in a habitat, but behind this there may be varied developments for different species. Some species benefit from changing conditions, while others are under pressure. It therefore remains important to look at the underlying trends in order to understand the full picture. Within the indicator for breeding birds of marshland and freshwater areas, it appears that, despite the overall increase of the indicator, 12 of the 31 species are declining, compared to 15 species that are increasing and 4

» Reconstruction of the Conservation Status (CS) of breeding birds, migratory birds and wintering birds in the Netherlands and the international targets for 2030 and 2050.



species that remain stable. The increase is mainly among birds of reeds and shrub vegetation, such as the Sedge Warbler, Bluethroat, Savi's Warbler and Eurasian Bittern, while the declines mainly occur among ducks, for example the Eurasian Teal, Garganey and Mallard.

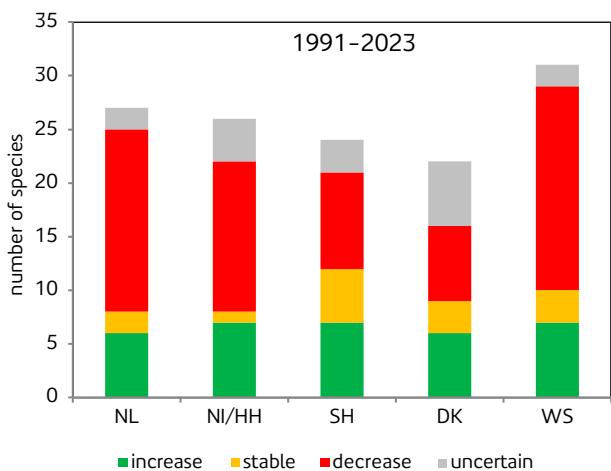

Individual population trends

An indicator can be strongly influenced by one or a few species with a very pronounced population trend, such as a rapid increase. This can visibly influence the overall trend of the indicator, even if most other species show a different development.

A sensitivity analysis can be performed to gain insight into the influence of individual species on the outcome of an indicator. Such an analysis helps to better understand how robust the indicator picture is and which species have the strongest influence on its development. For example, the Great Egret and Greylag Goose (both with a strong positive long-term trend) and the Eurasian Penduline Tit (with a strong negative long-term trend) appear to have a significant influence on the indicator for breeding birds of marshes and freshwater areas. Even without these species, the indicator shows an increase in marshland and freshwater birds. However, this increase is significantly less pronounced: without these species, the overall index for this species group would increase from 100 to approximately 130, whereas with these species it rises to 150.

At first glance, there appears to be a general increase in marshland and freshwater birds. However, there are clear differences between species. Birds that inhabit reeds and shrub vegetation, such as the Bluethroat and Eurasian Bittern, are doing well. At the same time, several duck species are declining, including the Eurasian Teal, Garganey and Mallard.

Development of the indicator for breeding birds of marshland and freshwater areas. The blue line shows the trend including all species; the orange line shows the trend excluding three species with a disproportionately large influence (Eurasian Penduline Tit, Greylag Goose and Great Egret). The grey lines represent the extreme values that the indicator can take, calculated from all possible combinations in which one, two or all three species are omitted.


Persistent negative trends among breeding birds in the Wadden Sea

The Wadden Sea is best known for its large numbers of migratory birds, but it also hosts a large number of characteristic coastal breeding birds during the breeding season. Some of these species are only found in the Netherlands and have been in decline for some time. Compared to the German and Danish Wadden Sea, the Netherlands is not always doing well – despite many initiatives to improve the situation for breeding birds.

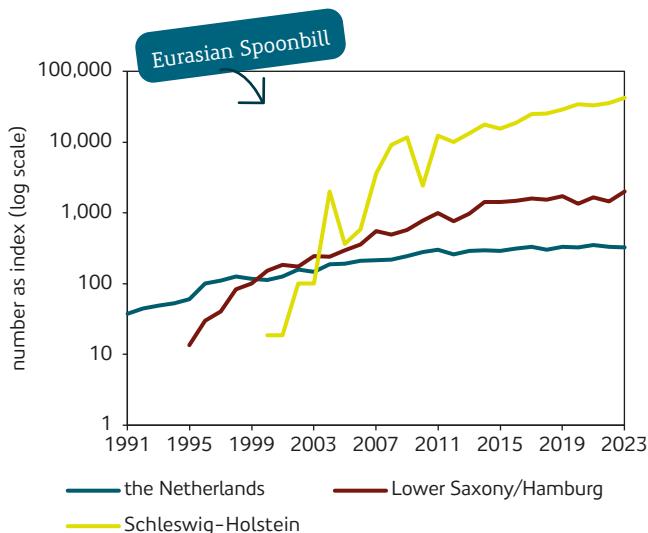
A significant proportion of the Dutch breeding population of species such as the Common Eider, Arctic Tern, European Herring Gull, Little Tern, Lesser Black-backed gull and Sandwich Tern is found in the Wadden Sea. Dunes, beaches and salt marshes provide an important breeding habitat, while the birds forage in the Wadden Sea, as well as in the North Sea. Many species have recently been in the spotlight due to their decline and, in some cases, poor breeding results. Of the thirteen species with a conservation target in the Natura 2000 management plan for the Wadden Sea, six species currently have a number of breeding pairs that is (well) below the target. The Hen Harrier no longer breeds in the Wadden Sea area. A new trilateral analysis with Germany and Denmark shows that many breeding birds are doing relatively poorly in both the Netherlands and Lower Saxony in Germany, and population recovery is not yet in progress.

For the entire international Wadden Sea, population trends since 1991 (start of the TMAP programme) have been negative for no fewer than 19 of the 31 species (61%). Typical Wadden Sea species such as the Eurasian Oystercatcher, Pied Avocet, Common Ringed Plover, Arctic Tern, Hen Harrier and Northern Lapwing have declined in all parts of the international Wadden Sea. The Dunlin and Ruff, which now only breed in Schleswig-Holstein and Denmark, are on the verge of local extinction. Only five species show a positive trend – and are generally doing well throughout north-western Europe – such as the Great Cormorant, Barnacle Goose, Eurasian Spoonbill and Great Black-backed Gull.

« *The Eurasian Spoonbill shows a positive trend throughout the international Wadden Sea. Photo: Ruurd Jelle van der Leij*

▲ *Summary of trends in breeding birds in the international Wadden Sea in the period 1991–2023. NL the Netherlands, NI/HH Lower Saxony and Hamburg, SH Schleswig-Holstein, DK Denmark, WS entire international Wadden Sea.*

In the Dutch Wadden Sea, 63% of species show a negative trend, proportionally more species than in surrounding countries. Lower Saxony in Germany shows a roughly similar picture (54%), while north of the Elbe in Schleswig-Holstein and in Denmark, significantly fewer species (both more than a third) show declining numbers. Species that are doing better in the northern part of the Wadden Sea include the Kentish Plover, Common Redshank, Black-headed gull and Common Tern. Possible causes may be differences in food availability or management and policy. In general, declines in many species are associated with persistently poor breeding results: too few young birds are reaching fledging age to keep the population stable, at the very least. We see this pattern throughout the Wadden Sea, especially in the Eurasian Oystercatcher and Pied Avocet. Poor breeding success was also mentioned as an important factor in an earlier 'health check' of the Wadden Sea.


Many of the downward trends mentioned are continuing, but at the same time some species in the Dutch Wadden Sea are stabilising at a low level, such as Eurasian Oystercatcher and Common Redshank. However, some species have recently started to decline (sometimes after a previous increase), for example Common Shelduck and Lesser Black-backed gull. The decline in Common Gulls has accelerated in recent times.

Eurasian Spoonbills and Little Terns are increasing

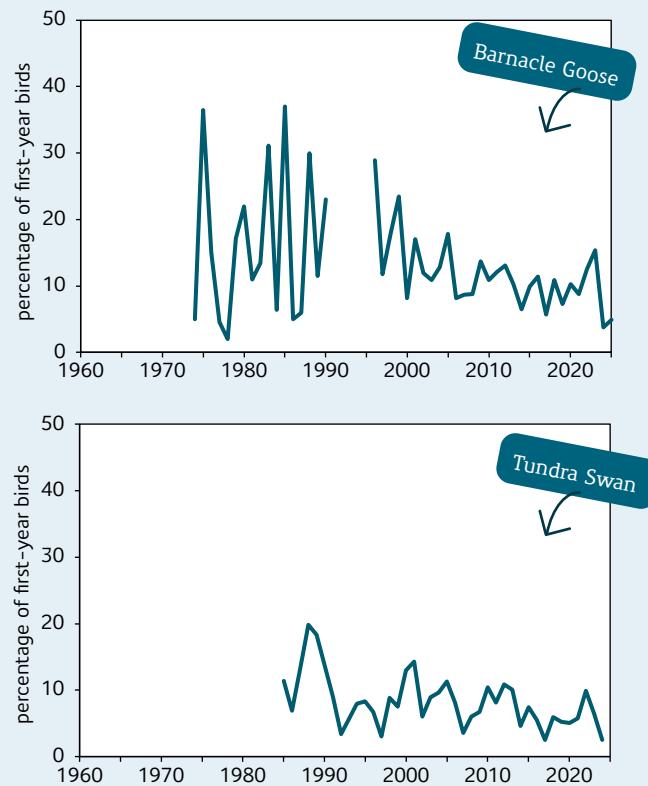
Despite the prevailing declines, a few species are showing an increase. Growing numbers of Eurasian Spoonbills used the Dutch Wadden Sea as a springboard for settling in the Wadden Sea of Lower Saxony (1995), Schleswig-Holstein (2000) and Denmark (2007). In the Netherlands, growth has now stabilised due to the food situation, but in other parts of the Wadden Sea we are still seeing an upward trend, despite local losses due to predation and the subsequent relocation of existing colonies. The Little Tern has been doing better in the Dutch Wadden Sea and on the beaches of the Wadden Islands than in Germany and Denmark for some time now.

Monitoring supports action for breeding birds

Monitoring data from the Wadden Sea supports conservation initiatives such as the *Actieplan Broedvogels* of the former *Programma Rijke Waddenzee*, the programme *Wij- en Wadvogels* of the *Coalitie Wadden Natuurlijk* and the *strandbroedersproject voor groene stranden*. These initiatives attempt in various ways to expand or better manage breeding habitats for coastal breeding birds and to protect breeding sites from disturbance or predation. Predation seems to be a particular problem along the mainland coast; on the islands, this is less of an issue due to the absence of ground predators. In Schleswig-Holstein, however, the high population of brown rats appears to be leading to massive breeding failures, even on remote islands.

▲ *Trends of Eurasian Spoonbill and Little Tern in the international Wadden Sea and the various countries.*

Disappointing breeding results for Arctic swans and geese


In addition to population trends, the Waterbird Monitoring Network (Meetnet Watervogels) also tracks breeding results for swans and geese. For Arctic species, this is a good indicator of conditions in the often inaccessible tundra regions. Together with data on annual survival, this provides insight into factors that influence population development. A striking feature of the autumn of 2025 is the low breeding success of a number of species.

Every autumn, specialists count the proportion of first-year birds in as many groups of swans and geese as possible, recognisable by their plumage and behaviour. Thanks in part to pioneers such as the late Leo van den Bergh and Jules Philippona, we have unique data series in the Netherlands, now partly coordinated internationally through specific counts in several countries.

The long-term trend in the percentage of young birds fluctuates greatly, particularly among Barnacle Geese (but also partly among other species), partly due to lemming cycles and the associated predation pressure. Nowadays, almost all Arctic species return from their breeding grounds with (significantly) fewer young than before the turn of the century. Good breeding years and poor breeding years are also less distinct from each other nowadays. Preliminary results from the autumn of 2025 show exceptionally few young birds in groups of Greater White-fronted Geese (7.9% young), Barnacle Geese (4.9%) and Brant Geese (3.9%), a repetition of the situation in autumn 2024: for

the Greater White-fronted Goose, both years are among the six worst since 1961. For the Barnacle Goose, this is the first time since the late 1980s that two consecutive seasons have been so poor. Figures for the Tundra Swan are not yet available, but given the similar trend with the other species, poor breeding success is also likely (and could be confirmed with the international breeding success assessment in December 2025).

In 2024, the low number of young geese and swans was probably the result of an exceptionally cold and late spring in the Russian tundra. The summer of 2025 was also colder, albeit less extreme; in 2024, even adult birds starved due to lack of food. Breeding success depends on a complex interplay of factors such as the timing and conditions of the spring migration, snowmelt on the tundra, the start of the growing season, the condition of the female and the survival chances of the young due to food availability. In both 2024 and 2025, this balance was apparently negative.

↗ Breeding success of Brant Goose, Barnacle Goose, Greater White-fronted Goose and Tundra Swan, as recorded in the Netherlands in autumn.

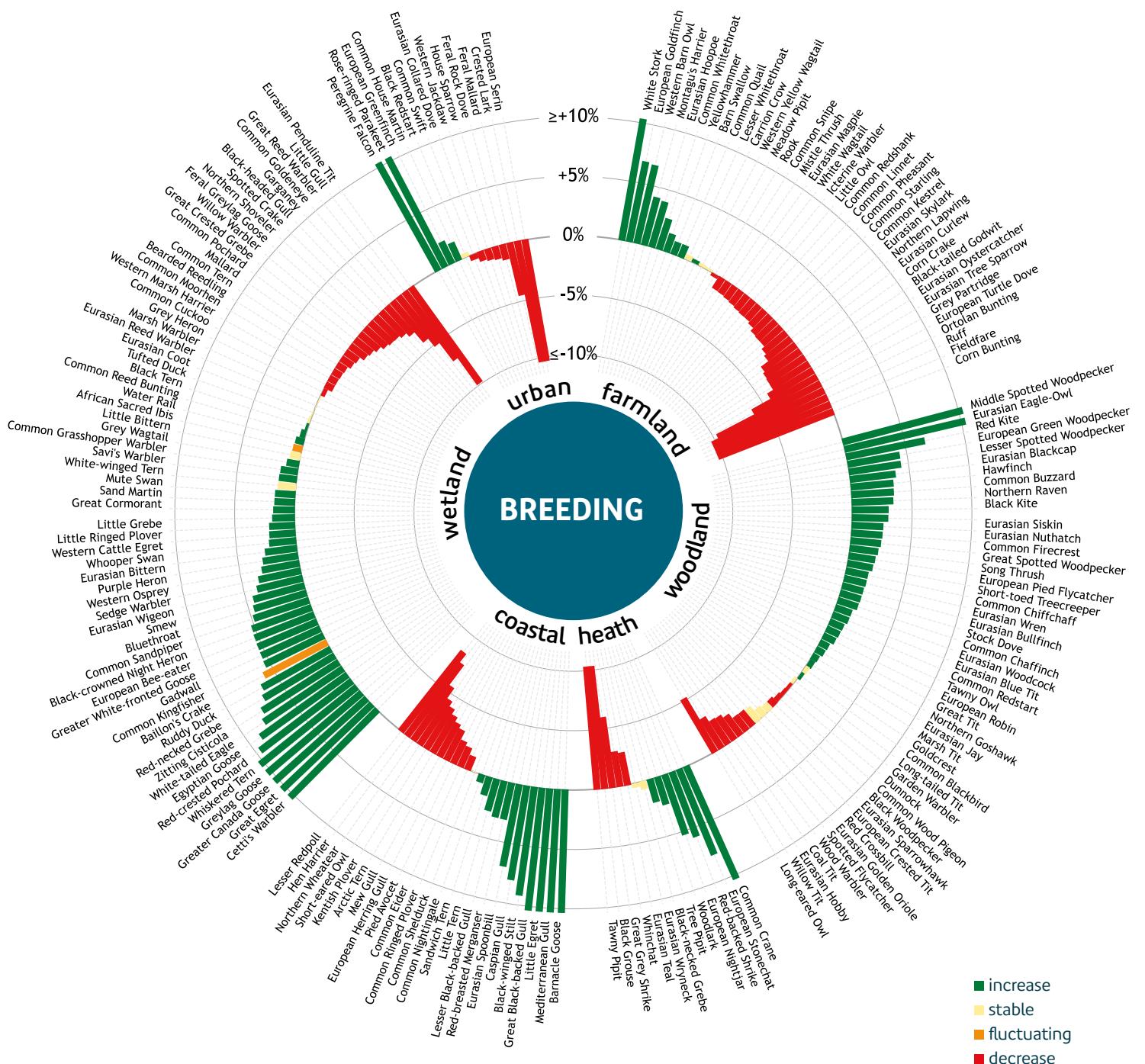
Why are Barn Swallows declining?

Barn Swallows have had a difficult few years. Between 2019 and 2024, the Dutch population declined by a third. To date, there has been no recovery. What is the reason for the sudden decline of this aerial acrobat?

The Barn Swallow population has declined by a third in five years time. Photo: Aaldrik Pot

Every year, volunteers monitor several hundred barn swallow nests as part of the Nest Record Scheme. This nest data enables us to try to explain changes in bird populations. The data from recent years show striking results for the breeding population of Barn Swallows. For example, the number of fledglings per successful nest has been on the low side since 2018 compared to previous years (see figure below), although this will be slightly higher again in 2024 and 2025.

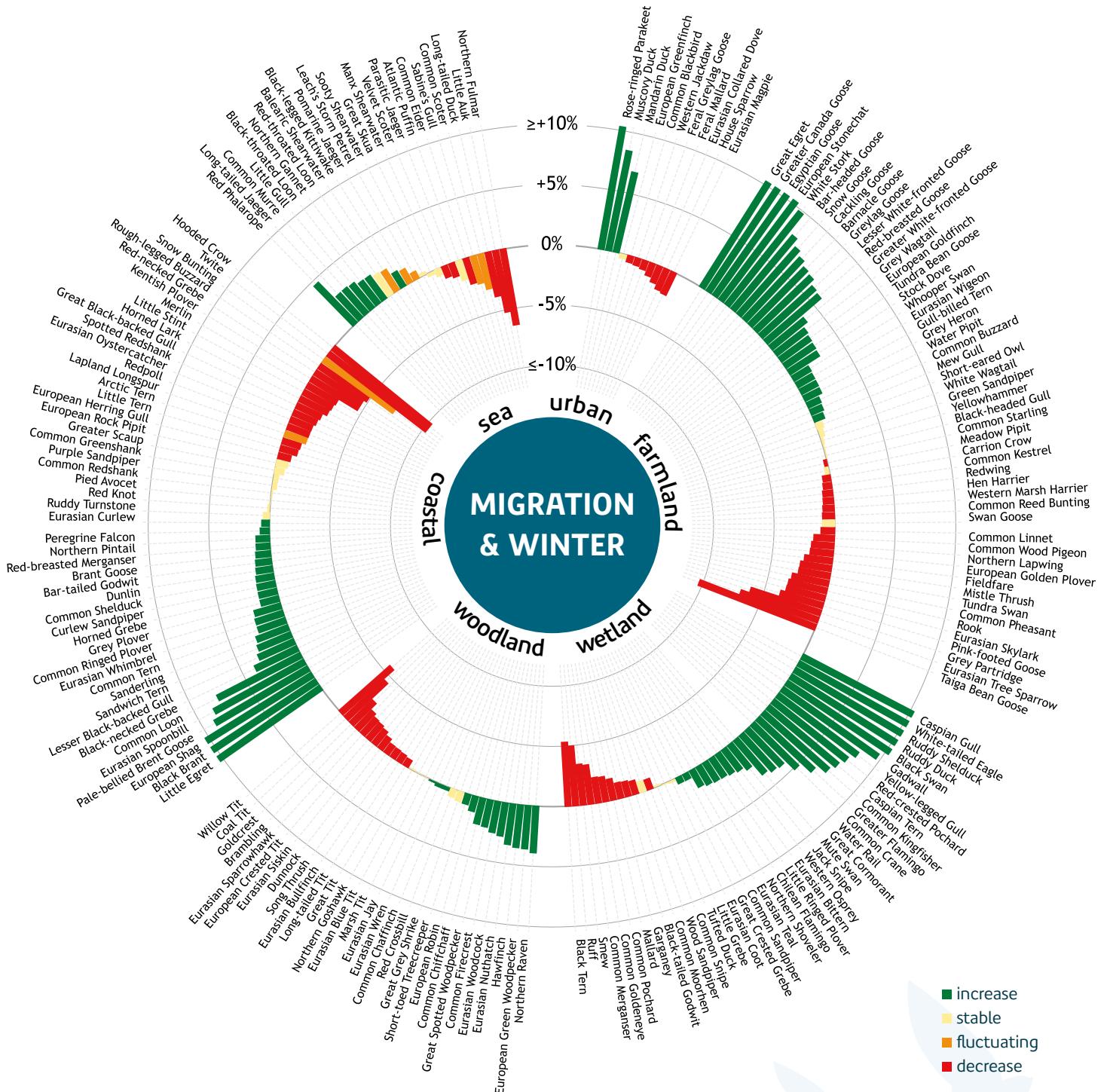
A comparison of annual population trends shows that a year with few fledglings per successful nest is often followed by a year with a lower return of breeding birds. This suggests that the number of fledglings influences changes in population size. Previous data, collected as part of the *Year of the Barn Swallow* in 2011, show that annual survival — especially that of first-year birds — also plays an important role. Why the number of fledglings has been lower in recent years and what other factors play a role in the recent decline of the barn swallow remains a mystery for now.


Other swallows breeding in the Netherlands (Western House Martins and Sand Martins) are not declining in number for the time being, although the numbers of both species appear to have stabilised recently after years of increase. Perhaps some of the mystery surrounding the Barn Swallow can be unravelled with ringing data. This data can be used to determine the survival rate of breeding birds.

Finding explanations has become increasingly difficult in recent years because the number of nesting records for Barn Swallows is declining. Only a few locations are monitored intensively. As a result, not only is the sample size smaller — from more than 500 nest records in the years before 2022 to around 250 in 2024 and 2025 — but so is the distribution across the country. This means that data from a single region can have a major impact on the national results. In order to monitor the breeding performance of Barn Swallows, it is important that more nesting sites are monitored. Because Barn Swallows often nest with several pairs on the same site, monitoring nests on just one or a few farms can already make a big difference.

▲ The annual average number of fledglings per successful nest of Barn Swallow, including 95% confidence interval. Data for 2025 are still provisional.

The state of



About the figures

Species' changes determined with the national bird monitoring programmes of Sovon and CBS (Ecological Monitoring Network). Left: breeding bird trends (since 1990) are presented based on data from the Breeding Bird Monitoring Programme. Right: trends of migratory and wintering birds are presented (since 1980/81) based on the data from the Waterbird Survey, counts at night roosts, and the Point Transect Count Project (PTT) for terrestrial wintering birds. The species are grouped according to their main habitat. Generalists are arbitrarily assigned to

a habitat. Trends are ranked from strong increase (green) to strong decrease (red). The height of the bars is a measure of the strength of the average annual change. For example, a value of -5% means a decrease of almost 80% over 30 years. Changes greater than 10% per year are capped for readability. For trends with no significant long-term change, a distinction is made between stable numbers (yellow) and fluctuating numbers (orange).

of our birds

More information?

Visit our websites for more information:

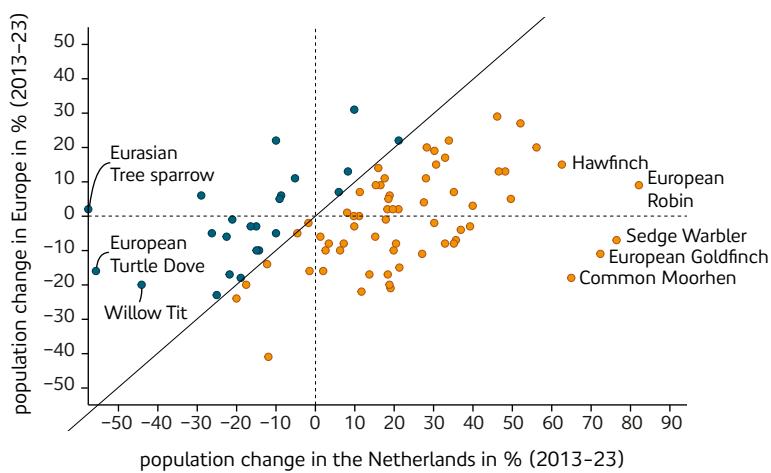
- > national, regional and Natura 2000 trends for each species: stats.sovon.nl
- > species distribution: vogelatlas.nl
- > monitoring reports: stats.sovon.nl/pub

Source: Network Ecological Monitoring (Sovon, RWS, CBS, provinces)

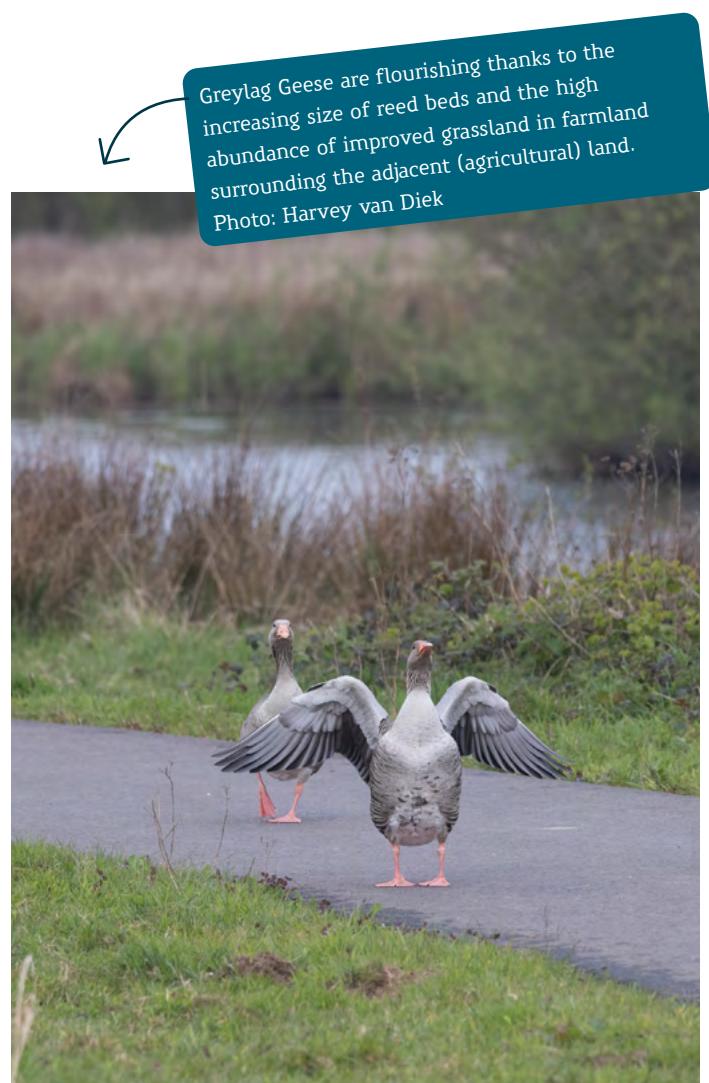
The Netherlands or elsewhere in Europe – what's best?

The Netherlands covers only 1% of the land area of the European Union. It is a small country, but thanks to its varied landscape, mild winter climate, the Delta and the Wadden Sea, it is home to many different breeding birds. What developments are the populations showing and are there differences with other parts of Europe?

✉ Eurasian Tree Sparrows. Photo: Wies Vink


Many breeding birds in Europe are under pressure. Between 1980 and 2009, almost half a billion individuals disappeared, according to researchers' calculations based on breeding bird counts across much of the continent. This is a significant decline, with a striking difference between common and rarer species. Many common species, such as the House Sparrow and Common Starling, are declining, while populations of rare species are mainly growing.

The decline is most pronounced in farmland, where intensification of land use, fertilisation and pesticide use have a major negative impact on breeding bird numbers. The expansion of urban areas also generally results in declines. However, there are significant differences between species, habitats and countries. Declines are not prevalent everywhere. While the total biomass of birds has declined sharply in Europe, this is not the case in the Netherlands, for example. There are also species that benefit from the changing environment, such as the Greylag Goose. They are flourishing thanks to the increasing size of reed beds and the high abundance of improved grassland in farmland surrounding the adjacent (agricultural) land.


Differences

Breeding bird counts from thirty European countries are brought together in the Pan-European Common Bird Monitoring Scheme (PECBMS), which focuses on commonly occurring breeding birds. This provides reliable European trends for 168 species. In principle, these species are monitored in sample areas. When we compare these trends with those in the Netherlands, we see striking differences. For the 89 species that are also monitored in the Netherlands via sample areas, we were able to examine the difference in population change in the period 2013-23 (figure 1). These are species that occur both in the Netherlands and elsewhere in Europe and for which sufficient data is available. For 24 species of breeding birds, the short-term developments are more negative in the Netherlands than in Europe. 65 species have a more positive development than in Europe. In recent years, the balance seems to be in favour of our country. This is quite unexpected in a country with very intensive agriculture and increasing urbanisation.

The differences between Dutch and European trends are not easy to interpret and vary per species. It is also important to consider the fact that species that have recently disappeared almost entirely from our country can no longer be included in the analysis, such as the Corn Bunting and European Serin. Species that appear usually show a strong positive trend. Bear in mind that this is a relatively short series of years and that an emerging species will, by definition, increase in number first, which means that long-term changes sometimes give a completely different perspective. In addition, emerging species often involve smaller numbers. The varying developments in Europe are not about ticking boxes, but about finding explanations for these interesting differences.

▲ Figure 1. Population change (in %) between 2013 and 2023 of 89 species of breeding birds in Europe and the Netherlands. Please note this may involve both increases and decreases.

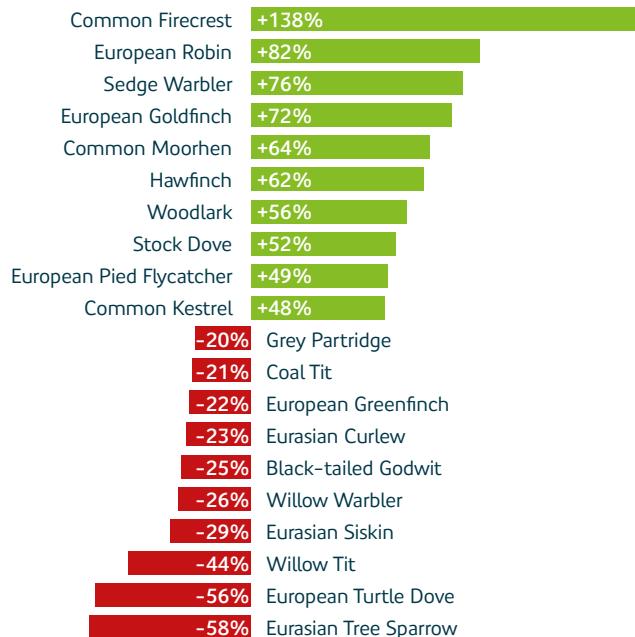
Common Firecrest

Since a wave of expansion from Central Europe, the Common Firecrest has also been breeding in our country in coniferous forests and mixed forests with a few spruce trees and ivy. The recent increase of on average 7.1% per year follows a dip in the decades around the turn of the century, which is mainly attributed to the decline of coniferous forests and the conversion to deciduous forest. The exact causes of the current population growth of this small bird, weighing about 5 grams, are not entirely clear. In any case, mild winters seem to influence the rate of this growth, probably because survival probabilities during winter have increased. The European population has been stable for a long time; the highest densities are found in slope forests with many conifers in the Pyrenees and Alps.

▲ Common Firecrest. Photo: Bennie van den Brink

Forest birds

Among the species showing a more positive trend in the Netherlands, there are a striking number of birds that mainly breed in deciduous and mixed forests. There is an increasing amount of dead wood, and monotonous coniferous forests are increasingly being converted into deciduous or mixed forests. In addition, the forests – practically all of which are planted in the Netherlands – are getting older. In the case of woodpeckers, which are sedentary, it is to be expected that the changes are directly related to the condition of the forest. In addition to Great Spotted Woodpeckers, Lesser Spotted Woodpeckers are also benefiting from the increasing availability of older deciduous trees. The population is not increasing in all older forests, but the expansion is evident. Many younger forest areas in the provinces of Brabant and Flevoland have also been occupied, as have the dune regions along the North Sea coast.


Middle Spotted Woodpeckers have expanded their habitat from Germany and, in addition to older oak forests, have also discovered tree-lined avenues with other tree species in the Netherlands. Woodpeckers are doing well almost everywhere in the Netherlands, while in some other countries large-scale logging, fragmentation and hot summers are creating poorer conditions. The Goldcrest and Coal Tit show that not all forest birds benefit from changes in the forest. In the Netherlands, both species declined more sharply in the long term than in Europe, where there has been a moderate decline overall. Both breeding birds breed in coniferous forests. Due to forest conversion, the decay of common spruce plantations and, presumably, the deterioration of forests on sandy soils, these small birds have a harder time in the Netherlands than in northern Europe. In general, forest birds in the Netherlands have increased in number over the past twelve years, in contrast to our surrounding countries.

Goldcrest

Unlike its close relative, the Common Firecrest, the Goldcrest is in sharp decline in the Netherlands. Higher summer temperatures and drought have weakened stands of common spruce, an important tree species for the goldcrest. Other conifers are also struggling. As a result, insects that damage these trees are gaining ground. Uniform forest areas with decaying spruces are often being cut down and converted into more varied forests. The disappearance of habitat is causing declines in breeding Goldcrests in large parts of Europe. There are probably also other problems, such as a reduced food supply, but little is known about this. The population of Goldcrests in the Netherlands has recently declined by more than 5% per year – almost twice as fast as in the rest of Europe. Apparently, the problems are even greater here than elsewhere.

Farmland

Both in Europe and in the Netherlands, the group of birds that breed in farmland shows the greatest decline. Species of open grassland show the greatest differences compared to the whole of Europe. For example, Black-tailed godwits, Northern Lapwings and Eurasian Curlews are declining more sharply in the Netherlands. Several seed eating species are also in the top 10 of declining species compared to Europe (Figure 2). The European trend for the Eurasian Tree Sparrow has recently stabilised, partly thanks to increases in Austria, Switzerland and Finland, while the decline in the Netherlands and surrounding countries continues. Intensive agriculture and pesticide use are likely to play an important role in this decline. The food supply in the form of wheat harvest residues, weed seeds and insects has declined sharply, and there are indications that too few sparrows survive the winter. Whereas in countries such as Denmark, the Czech Republic and European Russia, Tree Sparrows are still abundant, in the Netherlands it is now remarkable to find even a small group of Tree Sparrows. The species symbolises a group of breeding birds that was once very numerous but has now become scarce.

▲ In the Netherlands, the nests of the Western Marsh Harrier often fail due to predation. Photo: Thijs Glastra

▲ The Marsh Warbler benefits from, among other things, the expansion of marshland through ecological restoration. Photo: Bennie van den Brink

▲ Figure 2. Top 10 breeding birds counted in sample areas (BMP, MAS, MUS) that show the greatest differences with European trends in the period 2013-23. The total increase or decrease in the Netherlands during this period is shown.

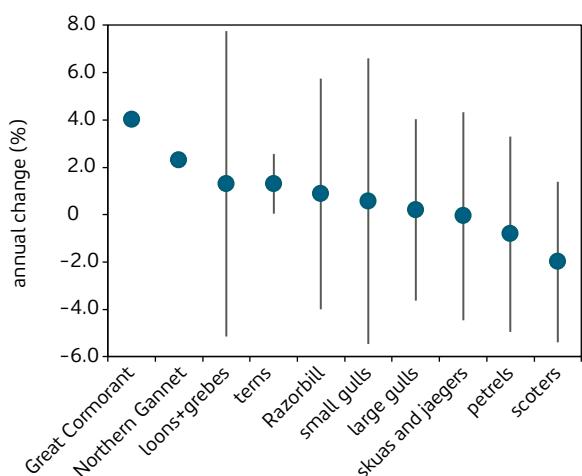
Marshland

In the Netherlands, most marsh birds are increasing in number in both the short term (since 2013) and the long term (since 1990). Two processes play an important role in this, alongside many other factors. Most breeding birds that overwinter in the Sahel are showing a steady recovery after the extreme drought in these wintering areas in the 1970s and 1980s. This recovery is also noticeable elsewhere in Europe, although there are differences. For example, the population of the Sedge Warbler fluctuates on a European scale, while the species is still increasing strongly in the Netherlands. The second important process, the expansion of marshland through ecological restoration in the Netherlands, clearly benefits this species. The Marsh Warbler, which is showing a more positive trend in the Netherlands than in Europe, is also benefiting from this. The species benefits, for example, from scrub in extensively managed floodplains and other ecological restoration. Most reed birds are thriving in the Netherlands, but this is not the case for the Western Marsh Harrier. The drying up of reed beds makes their nests more accessible to predators, causing them to fail more often due to predation. This species is also still heavily persecuted: there are still nests that are deliberately destroyed by humans. The decline in our country is slightly greater than in Europe.

Trends in seabirds

The Dutch part of the North Sea forms a large wedge, extending to approximately the middle of Doggersbank. This sea area is an important habitat for a number of bird species, from true 'pelagic' seabirds, such as Northern Gannets and Black-legged Kittiwakes, to more coastal species such as Red-throated Loon, terns and scoters. How these birds fare at sea remains 'out of sight' for many, but for a few years now, trends have been calculated for almost all species occurring here within the Ecological Monitoring Network (NEM).

The trends are based on various data sources. The most important of these are the counts carried out six times a year from an airplane along fixed routes over the entire Dutch North Sea. Not all species are seen in sufficient numbers during these flights to be able to calculate trends. Some of them are observed more frequently during sea migration counts carried out by volunteers from dozens of seawatch stations along the coast. These data are now also included in the calculation of national trends for non-breeding birds. For several species, a single data source is used (e.g. aerial surveys for Common Murres and Razorbills, sea migration counts for smaller jaegers and Little Terns), while for others a combination of the two is used, such as for Red-throated Loons, Great Skuas and Little Gulls. For species that occur both on the North Sea and on land and large waterbodies within the coastline, data from waterbird counts and aerial surveys are combined.


Number development

Of course, different sea and coastal birds show quite divergent population trends, but a few broad outlines can be sketched. Looking at taxonomic species groups and the long term (since 1980), Great Cormorants and Northern Gannets in particular show a significant increase, but for most other species groups, the long-term trend is also slightly positive or stable on average. Notable exceptions are the Common Scoter and Velvet Scoter (whose population trends are partly related to the presence of shellfish beds off the coast), and the petrels and jaegers, which are now seen much less frequently from the coast than a few decades ago. There are exceptions, however, as in September 2025, for example, a new national daily record was set for Manx Shearwaters. The trend calculation takes into account the occurrence of stormy weather conditions in which these species come within sight of the seawatching stations along the coast.

Even then, the numbers of these species can vary greatly, with weather details (wind direction and origin of storm depressions) playing a role, as well as variations in the numbers of birds present in the southern North Sea at that time, sometimes for only a short period of time.

Avian influenza

A remarkable phenomenon that several seabird species have had to deal with in recent years has been the large-scale outbreaks of high-pathogenic avian influenza (HPAI) in breeding colonies, for example in 2022. Among Great Skuas, Northern Gannets and Sandwich Terns in particular, the mortality rate among adult breeding birds was in the tens of percent. For Great Skuas and Sandwich Terns, this mortality is also reflected in the Dutch indices for the last two seasons. In the first season after the outbreak (2022/23), the numbers of Gannets were considerably lower than before, but in 2023/24 they were exceptionally high. Although breeding success returned to normal in that year, a complete recovery of the population numbers could not yet be assumed. Local food availability, such as abundant fish off our coast, can also influence the numbers counted.

▲ Trends (average annual change since 1980 or 1990) in species groups of seabirds and coastal birds. The error bars indicate the variation (standard error) in the trends of different species within a group.

▲ Northern Gannet. Photo: Caroline van Oostveen

Counting series over time

For decades, systematic breeding bird counts have been carried out in the Netherlands. Volunteers and researchers compile millions of observations every year, enabling us to track trends that would otherwise remain unknown. These data form an indispensable basis for understanding changes in bird populations, identifying causes and developing effective policies.

Thanks to long-term monitoring, we not only know which species are increasing or declining, but also how major processes such as climate change, land use, urban renewal and expansion, and nature conservation are affecting our bird populations. Impressive examples of long-term count series are those from the city of Alkmaar, the Gelderse Poort are in the floodplain of the Lower Rhine and the southwestern part of the province of Drenthe. All of them have been carried out and documented for decades; only the approach differs for each series.

60 years of bird inventories in Alkmaar city

Birds in urban areas are often not of direct interest to birdwatchers. As a result, the historical population trends of bird species that mainly occur in cities are often not well known. Moreover, these trends may differ from national trends, which are mainly based on counts in rural areas. In the city of Alkmaar, however, all breeding birds have been counted since 1984, with the inventory being repeated every ten years. In 2023 and 2024, the fifth inventory has been carried out in this urban area. This has resulted in a unique data series.

Urban birds in urban biotopes

All biotopes found in the city were surveyed during the inventories: residential areas, industrial estates, sports fields, parks and urban waterbodies. In 2023 and 2024, 86 species of breeding birds were identified, with a total of 13,500 territories. Of these, the Common Blackbird, Western Jackdaw and Great Tit are the most common, each with more than 1,000 territories. Of the most distinctive urban birds, the Feral Rock Dove is exceptionally scarce, with only 31 individuals counted, and the Great Tit has remained remarkably stable in number over the past twenty years (fluctuating between 289 and 315 pairs).

Appeared and disappeared

This inventory identified seven newcomers in Alkmaar: bird species that are breeding here for the first time. On the other hand, 14 breeding bird species have disappeared. The change in the breeding bird population of Alkmaar partly reflects developments in bird populations in the Netherlands. Regarding the Crested Lark, for example, the authors write in *De vijfde Stadsvoegelinventarisatie van Alkmaar*: 'As is often the case with common species, it takes a while before you realise that they have suddenly disappeared. The last Crested Larks were seen in Alkmaar in 2001. The Crested Lark is no longer present in Alkmaar, Noord-Holland or the Netherlands'. Further on, they put this into perspective: 'There will always be species that are doing well and species that are not doing well.'

▲ Photo: Fred Hustings

Newcomers

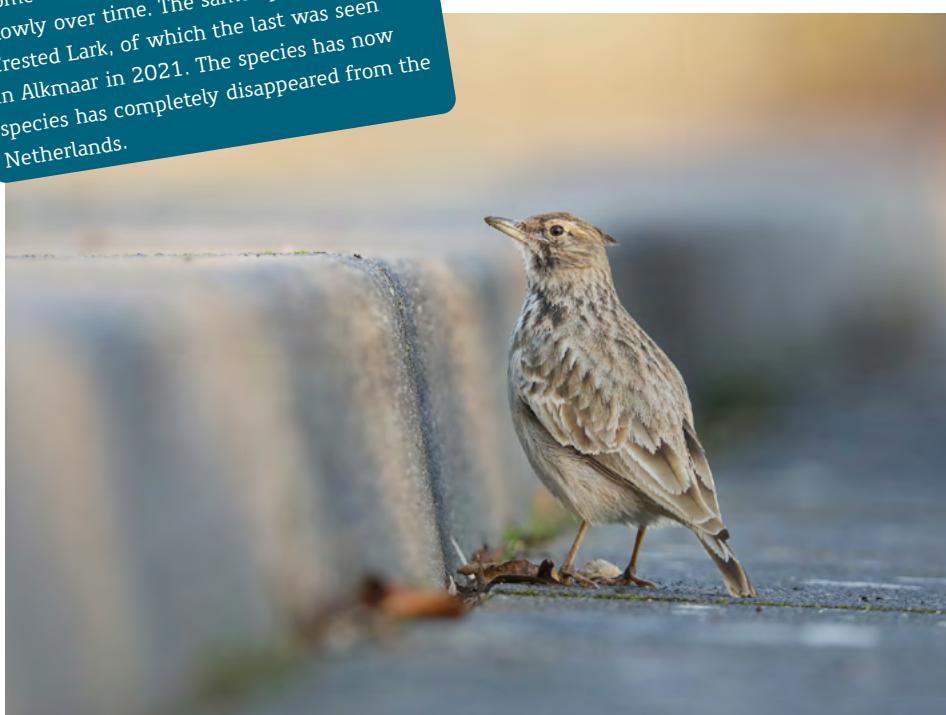
The breeding birds that have been seen for the first time in Alkmaar are mainly species that are also thriving nationally, such as the Eurasian Spoonbill ('big surprise'), the Common Buzzard ('not unexpected') and, almost self-evidently, the Cetti's Warbler. After years of presence, the Rose-ringed Parakeet has now definitively established itself as a breeding bird, after the first breeding attempt in 2015 was 'thwarted by Jackdaws'. This phenomenon is also known from other cities. The arrival of a new non-native species is usually viewed with suspicion. However, the species that are generally most feared when Rose-ringed Parakeets appear – the Great Spotted Woodpecker and the Great Tit – are still increasing in Alkmaar, both in number and distribution.

Deviating trends

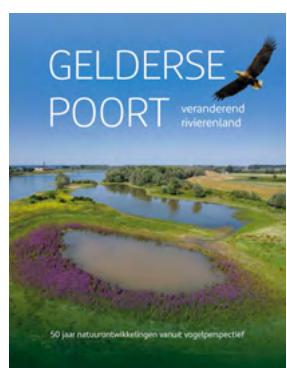
The species in Alkmaar that follow the national trend – both increasing and decreasing – are likely to be affected by the same underlying causes as in the rest of the Netherlands. However, there are also species that show a different trend in Alkmaar. For example, it was found that the Mallard population in Alkmaar is declining twice as fast as the already alarming national decline. The House Sparrow, which is recovering nationally after the major decline at the end of the twentieth century, is not recovering in Alkmaar. This is a worrying development, as the causes are likely to lie in Alkmaar itself.

Urban monitoring series such as those from Alkmaar are becoming increasingly important as long-term counting efforts persist. The census will continue in the future and hopefully new developments in Alkmaar will be recorded in the next inventory in 2034.

50 years of counting breeding birds in the Gelderse Poort


The Gelderse Poort is a unique nature reserve in the east of the Netherlands, where river the Rijn flows into our country through a 'gateway' in the moraine ridge and branches off into river the Waal and the Pannerdensch Kanaal. The area consists of floodplains, marshlands, rivers and riparian forests, which together form a dynamic landscape with great biodiversity. The water is given more room, allowing natural processes such as flooding and grazing to determine the landscape.

More than 160 species of breeding birds now breed in the area, representing 80% of Dutch breeding bird species. The first breeding bird surveys took place as early as the 1960s. From the mid-1970s onwards, these were repeated regularly and in an extensive form, and from 1990 onwards even annually. These years of effort have resulted in very valuable information about the effects of ecological restoration in the area on breeding birds.


Benefiting from ecological restoration

Since 1986, some 12,000 hectares of floodplain area in the Gelderse Poort have been converted into nature. Side channels were created, floodplain forests emerged, the river was given more room and new landscapes were created. Fertilised fields and meadows were transformed into drifting dunes and rugged, flower-filled fields with grazers living outdoors all year round. Almost all breeding birds of reeds and shrubland have benefited from such development in the floodplains. Their populations have tripled on average since the mid-1990s. The European Stonechat and European Goldfinch have increased the most, but the Common Whitethroat, Western Marsh Warbler, Icterine Warbler and Lesser Whitethroat have also become much more numerous within the restored floodplain area.

Some common species are disappearing slowly over time. The same applies to the Crested Lark, of which the last was seen in Alkmaar in 2021. The species has now completely disappeared from the Netherlands.

▲ Crested Lark. Photo: Thijs Glastra

The book *Gelderse Poort - veranderend rivierenland* (*Gelderse Poort - changing river country*) was recently published. For more information, visit sovon.nl/gelderse-poort.

▲ European Stonechat. Photo: Thijs Glastra

Incidentally, breeding birds of (reed) marshland do not seem to benefit from ecological restauration. Their numbers have declined on average since 1991, although they have recovered in recent years, partly due to several years of wet conditions. Breeding birds of water and open marshland also show similar trends. It is striking that the recent recovery seen in marshland birds has not been mirrored in waterbirds. The small and diverse group of 'true' pioneer species has also failed to benefit from ecological restauration in the floodplain areas. The Sand Martin is the positive exception: a number of large colonies have established themselves in the floodplains and in the Rijnstrangen area, although this is mainly in sand deposits.

Recovery still incomplete

Based on breeding bird counts, it can be concluded that the recovery of the riverine breeding bird community in the Gelderse Poort is still incomplete. Contrary to expectations, water and marshland birds and pioneer species in the floodplains did not benefit from the ecological restauration. For water and marshland birds, this contrasts with, for example, the success of large-scale stream valley restoration along the Peizerdiep and the Hunze in the northern part of the Netherlands. For pioneer species, this contrasts with river restoration along the River Meuse, where, for example, large colonies of Sand Martins nest in banks that have been eroded during high water levels.

What is particularly lacking in the current situation from an ecological perspective are wet floodplains; low-lying areas that flood during high water and remain under water for several months in spring and early summer by retaining water for longer. On such plains, the water is shallow, stands still and gradually recedes. Here, a large biomass of invertebrates builds up in a short period of time, providing a solid food source for birds.

Future-proof river area

Developments in the Gelderse Poort are ongoing. With the *Programmatische Aanpak Grote Wateren* (PAGW), the Ministries of Infrastructure and Water Management (IenW) and Agriculture, Fisheries, Food Security and Nature (LVVN) want to continue building a robust and future-proof river area by 2050. The ambition is to further improve water and nature quality, connect areas more closely and give natural processes, such as river flooding, more space. Monitoring breeding birds will therefore remain important in the coming decades in order to determine the effects of these measures.

60 years of counting in Southwest Drenthe

In terms of breeding birds, Southwest Drenthe, with its Natura 2000 areas Drents-Friese Wold, Dwingelderveld and Holtingerveld, is one of the most thoroughly researched areas in the Netherlands. As early as the spring of 1967, Arend van Dijk, doyen of breeding bird monitoring in the Netherlands, began researching breeding birds in this nature-rich area. Arend and many other birdwatchers counted birds for 60 years. In 1981, Joop Kleine took over part of the inventory; together, they have been contributing to this impressive and unique series of counts for 50 years.

Changing landscape

Farmland, heathland, forest and buildings have characterised the landscape of Southwest Drenthe for centuries. At the end of the 1960s, the various landscapes still formed a reasonably coherent whole. Each type of landscape had its own breeding bird communities, and these communities together covered the entire area. Since then, the landscape of Drenthe has changed. Coniferous forests have been transformed into more mixed forests. Most heathlands have been rewetted and kept open through management measures such as grazing, sod cutting and mowing, and are now partly inaccessible to the public. The agricultural area has dried out and its use has intensified. Small woods that were planted have grown into forests. Since the early 1970s, new nature has been created on formerly cultivated land with the formation of marshlands and hay meadows. The buildings in villages and recreation parks have been expanded with more greenery.

Breeding birds

Many of the changes in breeding bird populations over the past 60 years can be explained by changes in the landscape. Between 1968 and 2024, 186 breeding bird species were recorded on sandy soils and in peatlands of Southwest Drenthe, half of which bred annually and almost a third in more than half of the years. The remaining species bred irregularly or accidentally. The current total number of breeding birds has not necessarily decreased, but the species and their distribution have changed. Gaps have appeared, particularly in agricultural areas. Some species, such as the Common Snipe and the Red-backed Shrike, have disappeared from farmland but have settled in the new nature reserves. For other farmland species, such as the Black-tailed Godwit and the Eurasian Curlew, these new nature reserves offered no alternative. They have practically disappeared from the area. Major changes also occurred in the heathland and forested areas.

▲ In the 1970s, Southwest Drenthe was still home to several hundred Black Grouse, but since 1986 the species has completely disappeared. Photo: Dominique Arnhem (photo archive Het Vogeljaar)

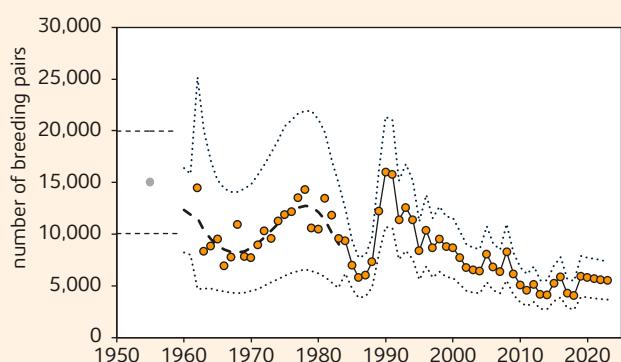
On heathland, Black Grouse disappeared and Common Nightjars and Common Cranes appeared, and in the forests, European Turtle Doves and Long-eared Owls disappeared, while new residents such as Hawfinches, Tawny Owls and Eurasian Eagle-Owls made their appearance. Not all changes can be explained locally; some are related to developments far away, or even to processes that began centuries ago.

Future

What does the future hold? Climate change and stricter environmental regulations are making the future of farmland birds particularly uncertain, and restoring the natural value of farmland requires a great deal of effort. It is very important that this long-term census is continued so that the data can be used to answer ecological questions. This once again emphasises the value of the efforts made by volunteer counters.

The book Van Korhoen tot Kraanvogel (From Black Grouse to Common Crane) was recently published. For more information, visit sovон.nl/van-korhoen-tot-kraanvogel

On heathlands of Drenthe, Black Grouse made way for European Nightjars and Common Cranes. Photo: Harvey van Diek


Old counting series in modern times

The many counts collected by Sovon as part of its counting projects, such as the breeding bird census, provide good indications of changes in bird numbers. These numbers are expressed in annual indices – relative differences compared to a reference year. For most species, annual indices are available through the Common Breeding Bird Scheme, which generally date back to the 1980s. However, Sovon also has data from earlier years, going back to the 1950s and 1960s. These are partly estimates of the total population size, such as for some colonial species and rare breeding birds. These estimates are not only for the various atlas periods but also for the years in between.

For many common species, we have annual indices covering the period from 1960 to 1990. By collecting hundreds of additional count series in various sample areas starting in the 1960s, we were able to present trends for these years around the turn of the century when the *Atlas of Dutch Breeding Birds* was published. By linking these 'old time series' to the current 'official' figures, we have time series covering more than sixty years. As mentioned, these are relative numbers. By linking these indices to the atlas estimates for the total population size, we can convert them into a series of numerical estimates. Based on this and the sometimes existing old estimates, it is possible

to give an indication of the population sizes in the 1950s. This is important for drawing up Red List reports and determining the conservation status.

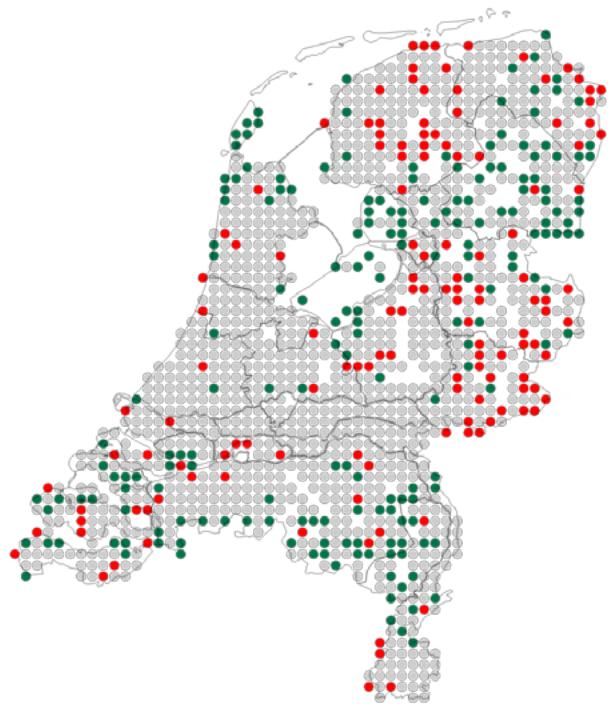
These long series also offer more perspective when assessing and explaining changes in numbers that have occurred in recent decades. For example, many species underwent major changes between 1950 and 1980, and these are now visible. The results are used for all kinds of species-specific studies, such as the reports in the context of *Year of....* For example, the figure below shows the trend for the Common Kestrel, bird of the year 2025.

▲ Time series of the breeding population of Common Kestrels in the Netherlands.

Common Swifts in motion

The Common Swift is known as a very philopatric urban bird, but is that really true? Until recently, there were few hard facts on the effect of urban renewal on the spatial distribution and population development of the Common Swift. That is starting to change now.

The urban area is not a homogeneous landscape, but a mosaic of different neighbourhoods that reflect the different periods of spatial city planning. Most places in the Netherlands have a historic centre, surrounded by a few pre-war neighbourhoods and many larger post-war neighbourhoods. Within the urban area, bird species differ in their preference for neighbourhood types. However, the urban area is not a static landscape. Buildings age, are demolished or renovated, and new houses are built. This changes the importance of the different neighbourhood types for birds. After all, the occurrence of species is linked to the landscape.


Common Swifts in the city of Noordwijk

In Noordwijk-Binnen, all swift nesting sites have been counted every five years since 1993. In 2010 and 2015, Noordwijk aan Zee was also monitored in the same way. These two villages together form the municipality of Noordwijk. The entire municipality was also counted in 1967 and 1968. The population size has remained more or less stable over the past 55 years, but its distribution has changed. Over the years, it has become increasingly diffuse. Large colonies disappeared and the number of buildings with only one or two breeding pairs gradually increased. As a result, the image that swifts mainly occur in old neighbourhoods is outdated.

Distribution in the Netherlands

The changes in Noordwijk occurred slowly within a relatively small area of two atlas squares of 5x5 kilometres. For reference: the Netherlands has a total of 1,685 atlas squares for breeding birds. Between the counts for the first breeding bird atlas (1973–77) and the last atlas (2013–15), the spatial distribution of the Common Swift in the Netherlands increased slightly, from 68% of the atlas squares to 70%.

At first glance, this appears to be a stable situation, but the spatial dynamics point at a different picture. The Common Swift disappeared as a breeding bird from 128 atlas squares, but settled in 160 new atlas squares. For example, the species disappeared from many rural areas, such as in the province of Friesland, but appeared in the 'new province' of Flevoland. The island of Texel was also colonised between the two atlas periods, the first Wadden Island to do so.

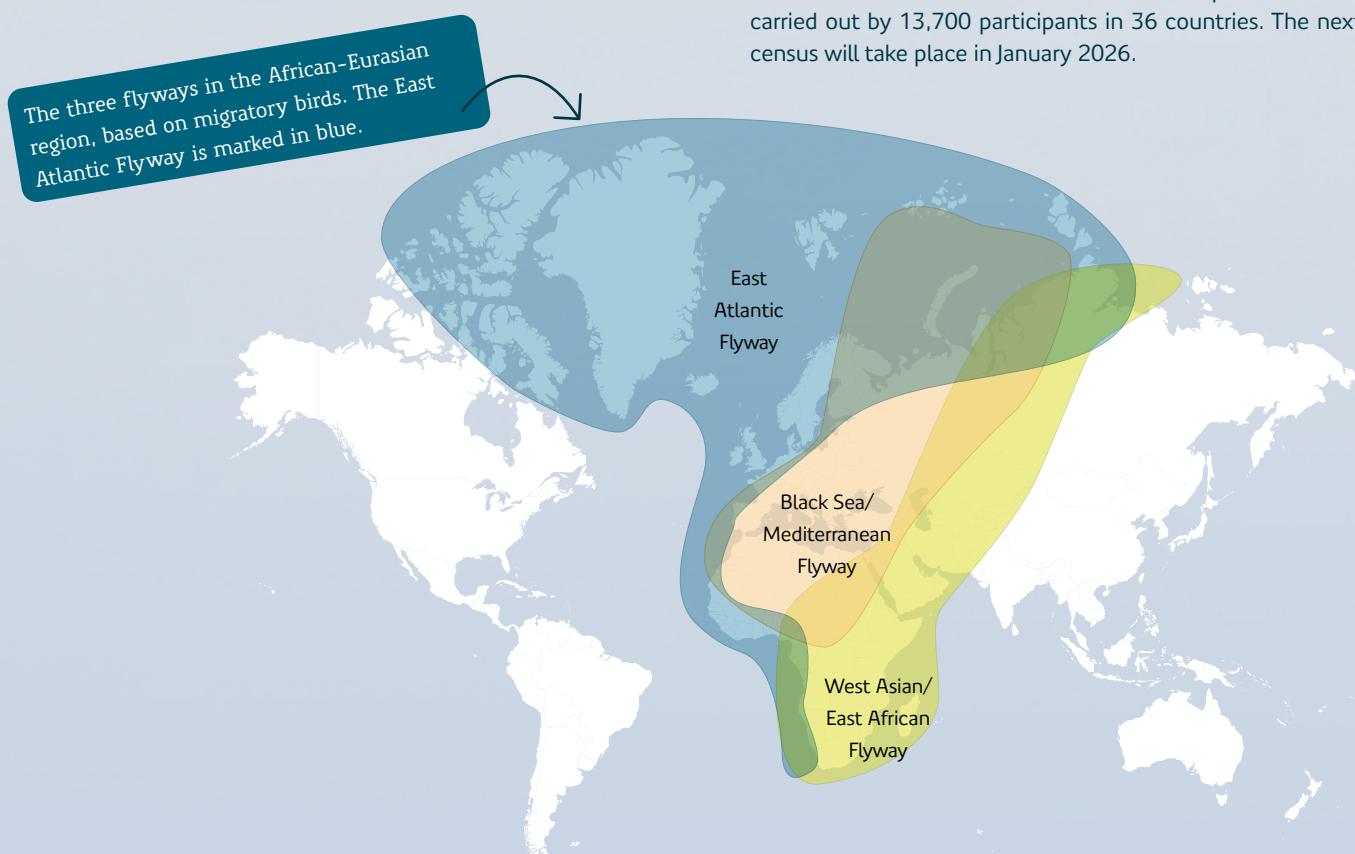
▲ This map is based on the Bird Atlas of the Netherlands (published in 2018). For each atlas square, it indicates whether the Common Swift appeared as a breeding bird (green), disappeared (red) or remained (grey) between the national atlas periods 1973-77 and 2013-15.

Fluctuating trend

This is not the end of the story. New colonies usually start small, with one or a few breeding pairs, and need time to grow. Since the start of the Urban Species Monitoring Network (MUS) in 2007, we have gained better insight into the population trends of the Common Swift. We see that the trend fluctuates. Until 2013, there was a decline, after which the species seemed to increase again for a number of years. In recent years, numbers have slightly decreased again. It would be interesting to investigate the underlying causes of these national fluctuations. What is the influence of the dynamics of urban renewal in the Netherlands?

Common Swifts. Photo: Ruurd Jelle van der Leij

Waterbirds and the East Atlantic Flyway



With their annual journeys, migrating waterbirds connect breeding areas, stopover sites, resting places and wintering areas, which are often far apart. This makes them vulnerable to numerous pressures in these areas, especially when these accumulate along the flyway. Comprehensive counts of these migratory birds provide insight into these threats.

The East Atlantic Flyway (EAF) is a migration route that, together with two other flyways, connects the bird habitats in Africa with those in Europe and Asia (see map below). The EAF stretches from the Arctic (north-western Canada to Central Siberia) via Western Europe to the entire west coast of Africa. The number and quality of habitats along this flyway are crucial for the sustainable survival of migratory waterbirds. At the same time, the area covered by this migration route is intensively used by the human population, with numerous cities, industries and activities spread across the entire area. After all, natural habitats and areas provide important ecosystem services in the form of food, flood prevention, building materials, renewable energy and recreational opportunities. A good balance between human needs and healthy ecosystems requires careful and adaptive management based on up-to-date ecological knowledge.

Indicators

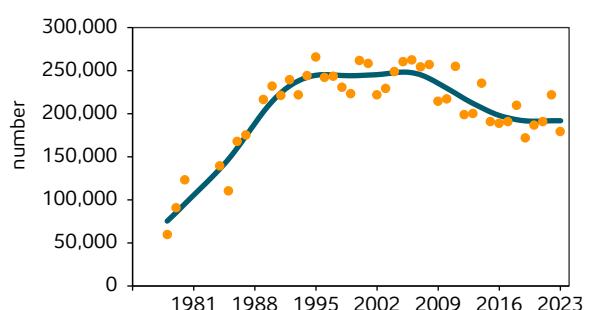
Waterbirds are good indicators of ecosystem health: they are easy to count and respond quickly to changes. Since 2013, the Wadden Sea Flyway Initiative (coordinated by the Common Wadden Sea Secretariat and by Sovon for monitoring), Wetlands International and BirdLife International have been working together to improve the monitoring of coastal waterbirds along the EAF. The monitoring programme collects annual data on the size and trends of waterbird populations and environmental conditions (pressure factors and conservation measures) at various locations. In most European countries, almost all areas where waterbirds occur are monitored annually. In Africa, this is often done only in a selection of areas. For this reason, a 'total' or comprehensive census is organised every three years in January. The aim is to map the number of waterbirds in all relevant areas in January, including the environmental conditions in those areas. The first comprehensive census was held in 2014. The most recent census took place in 2023, carried out by 13,700 participants in 36 countries. The next census will take place in January 2026.


« Grey Plover. Photo: Harvey van Diek

Short-term decline

The 2023 census shows both positive and negative developments in waterbird populations along the EAF. Although 67% of the total of 88 populations analysed are increasing or stable in the long term, 35% are declining in the short term. The declining species are a mix of high-Arctic, European and African breeding birds such as the Curlew Sandpiper, European Herring Gull and Western Reef Heron. This points to broader ecological changes along the migration route. Climate change, overfishing, habitat loss, infrastructure development and disturbance from tourism appear to be the greatest threats to migratory birds.

Cooperation


Many important areas along the migration route, such as coastal wetlands, are ecologically valuable but are insufficiently protected. This puts nature conservation under pressure. Reliable knowledge about the causes of changes in bird populations is essential for developing targeted management and strengthening policy for coastal and marine areas. Migratory birds connect countries and communities in Africa and Europe, and their protection requires a joint approach across borders. Only with the long-term commitment of all countries along the migration route can the local, regional or even global disappearance of species be prevented.

▲ Distribution map of the flyway population of the Grey Plover. The yellow dots indicate the numbers in January and the size is scaled to the median number of individuals per location in January 2019–23.

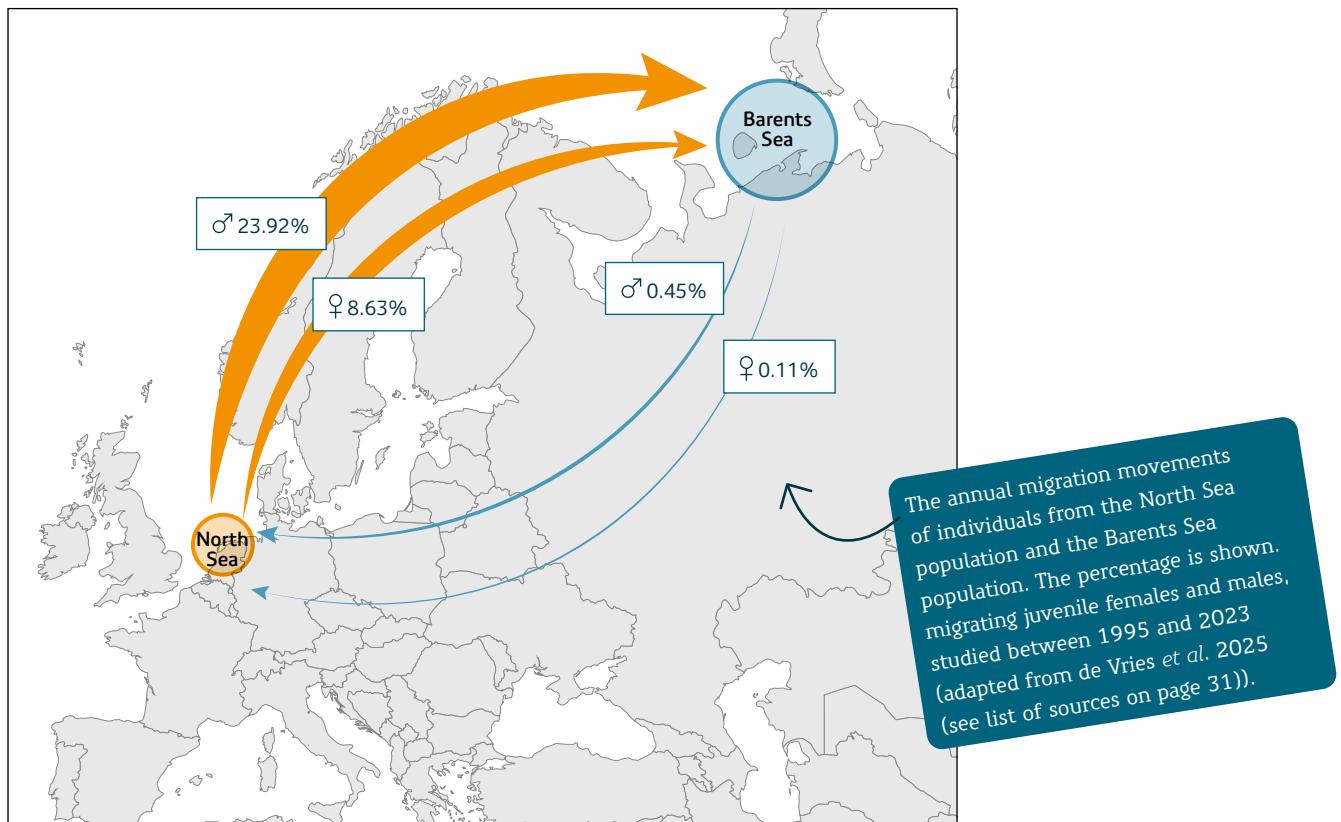
Grey Plover

The nominate form of the Grey Plover breeds in the tundra zone of Siberia, east of the Kanin Peninsula. There are two flyway populations within Europe and Africa: an eastern population that winters in the Middle East, eastern and southern Africa, and a western population that winters from north-western Europe to the Gulf of Guinea in Africa (see figure). The western population also winters in the Wadden Sea, but migrates here in larger numbers to and from the south. In the long term, the western population shows a moderate increase, but in the short term (2014–23) a slight downward trend can be observed. The trend in Africa is declining, but in Europe it is increasing. These different trends in Africa and Europe may be the result of reduced habitat suitability in Africa or increased habitat suitability in Europe. However, it cannot be ruled out that conditions in the breeding area also play a role.

▲ Population trend of the East Atlantic Flyway population of the Grey Plover.

Leave or stay, how flexible is the 'Dutch' Barnacle Goose?

Barnacle Geese are originally true long-distance migrants. The species has been breeding in the Netherlands for several decades now and can now even be found in our country all year round. How flexible is 'our' Barnacle Goose when it comes to migration and dispersion?


Researchers distinguish three large Barnacle Goose populations within the East Atlantic Flyway (EAF): 1. Barnacle Geese that breed in Greenland and winter in the United Kingdom and Ireland, 2. Barnacle Geese that breed on Svalbard and also winter in the United Kingdom, and 3. Barnacle Geese that breed in the Russian Arctic near the Barents Sea and winter in the North Sea area and the southern Baltic, mainly in the Netherlands and northern Germany.

Release of the migration

Since the 1980s, the breeding range of this Arctic migratory bird within the Barents Sea population has steadily expanded southwards. The species now breeds not only in the Baltic Sea region, but also in the Netherlands and Germany. Moreover, these birds have stopped migrating: they remain in the Netherlands all year round. This is also known as migratory drop-off: the abandonment of annual migration. In winter, the Dutch resident birds mix with winter visitors from the Baltic Sea and Barents Sea areas. This remarkable development raises several questions: how flexible is the Barnacle Goose and what role does the Dutch population play in the broader context of the flyway?

▲ The Barnacle Goose shows how dynamic a flyway can be and how thin the line between migratory and resident birds can sometimes be. Photo: Marcel van Kammen

Young males take the leap

Two recent studies have provided new insights into the flexibility and role of the Barnacle Goose within the flyway. Researchers from NIOO, Vogeltrekstation, Sovon and Radboud University combined counts and data from more than 22,000 colour-ringed Barnacle Geese (1995–2023). These geese originate from breeding populations around the Barents Sea, Baltic Sea and North Sea. Using this data, they calculated how much exchange (dispersion) takes place between these groups. The results show that although long-distance dispersion is rare, it does occur. This mainly concerns young males. This is probably because males are less attached to a fixed location: their success depends mainly on defending a mate, while females benefit from knowledge of the breeding area and the best places to nest and find food during the breeding season.

Every year, almost a quarter of the males born in the Netherlands take the leap to the Arctic breeding grounds. Observations of juvenile Barnacle Geese ringed in the Netherlands that were later found nesting in Russian breeding grounds also show that these birds can reproduce successfully. It is striking that the dispersion takes place almost exclusively in a northerly direction; exchange from north to south hardly ever occurs. This pattern suggests that the growth of the Dutch population does not depend on immigration from the Arctic north, but largely takes place by its own power.

Genetic differences

The second study looked at the genetic aspect of the story. Based on thousands of genetic variations in DNA, researchers were able to assign wintering Barnacle Geese in the Netherlands to their breeding populations in the Netherlands or Russia. Although the genetic differences proved to be small, indicating continuous gene exchange, it was possible to correctly trace the breeding population of a large proportion of the birds. These new genetic 'fingerprints' make it possible to link the origin of winter visitors to, for example, their behaviour, physiology and breeding success.

A thin line

Together, these two studies shed new light on the adaptability of the Barnacle Goose and the role of the Dutch breeding population within the flyway. Barnacle Geese born in the Dutch resident population appear to be flexible in their behaviour. They can adapt their migratory behaviour and develop into successful migratory birds. This dispersal of individuals to other areas is ecologically and genetically important. It ensures the exchange of genes between populations and strengthens the connection between groups that would otherwise remain isolated. In a time of rapid changes in the landscape, the Barnacle Goose shows how dynamic a flyway can be and how thin the line between migratory and resident birds can sometimes be.

Join in

Vogelbescherming Nederland, STONE Steenuilenoverleg Nederland and Sovon Vogelonderzoek Nederland have declared 2026 the *Year of the Little Owl*. Next year's research will not only be carried out by Sovon researchers, you can also participate!

More information about the activities and how you can contribute can be found on the website sovон.nl/jaarvandesteenuil.

▲ Little Owl. Photo: Gejo Wassink

2026 will be the Year of the Little Owl

With one glance from its expressive yellow-black eyes, the Little Owl wins many hearts. It is no coincidence that this smallest species of owls in the Netherlands has been the most popular bird on the *Beleef de Lente* website for years. However, its piercing gaze is not seen nearly as often as it was in the 1950s. Together with Vogelbescherming Nederland (Netherlands Society for the Protection of Birds (VBN)) and STONE Steenuilenoverleg Nederland (Little Owl Consultation Netherlands), in 2026 Sovon is therefore asking for extra attention for this public favourite.

In the first half of the twentieth century, the Little Owl was a common breeding bird in our country, with exception of the Wadden Islands. Nowadays, its distribution is more limited. The highest densities are found in the east of the country, on the sandy soils of the Achterhoek, Twente and North Brabant, and in parts of the river district. The decline is entirely due to the intensification of agriculture. The Little Owl is dependent on small-scale, semi-open agricultural landscapes. It breeds in the hollows of standard fruit trees or in nesting boxes on farmyards, and hunts for mice and insects from low perches such as fence posts or old fruit trees. Its distribution is therefore limited to areas where small-scale cultivated landscapes can still be found.

Not only has the distribution of the Little Owl declined but so have its numbers: in the period 1950–59, the population was still estimated at 25,000 breeding pairs, while the most recent estimate (2018–20) is 8,000–9,500 pairs. This decline mainly took place before the 1980s and is linked to the widespread loss of small-scale cultural landscapes due to land consolidation, large-scale use of pesticides in agriculture and horticulture, and the mass clearing of standard orchards. This has probably resulted in the loss of much of the Little Owl's breeding habitat.

Regional differences

Since the turn of the century, the national population of the Little Owl has stabilised. However, these figures conceal a variety of regional trends. On the upland sandy soils in the east and south of the Netherlands, the species has increased slightly over the last twenty years, while on the clay soils in the river area and the western Dutch sea clay areas, there is still a decline. The difference in breeding success probably plays a role here. Research has shown that fewer young birds fledge on clay soil than on sandy soil, and that their condition is poorer. This may be due to a difference in food supply. Cockchafer, a favourite addition to the Little Owl's diet, are mainly found on sandy soils, for example.

Research during the Year of the Little Owl

During the *Year of the Little Owl*, we want to investigate why the Little Owl thrives better on sandy soils. The dedicated species working group STONE has already started a food study, using camera images to analyse what food parents bring to their young on sandy and clay soils. In the coming year, we want to expand this research. In addition, we want to examine whether, besides a difference in breeding success, there is also a difference in survival between Little Owls on sandy and clay soils, and what the possible causes of this might be. This will help us determine how we can best help the Little Owl in our country.

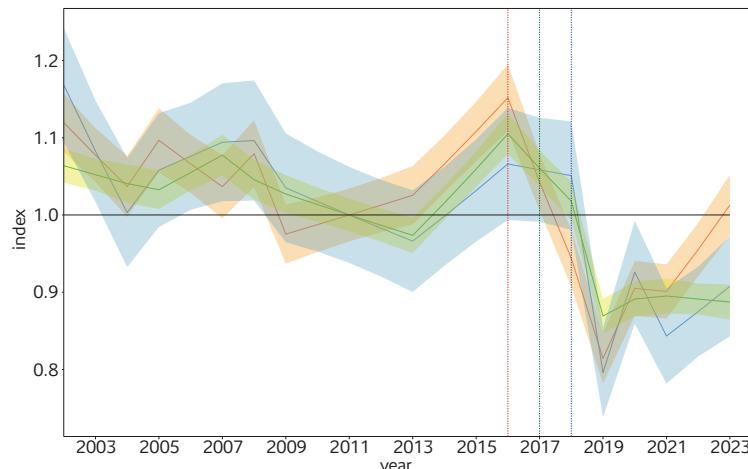
More plans are in the pipeline. As mentioned earlier, the Little Owl is a resident of small-scale cultural landscapes, where it prefers to breed on farmyards. Because their habitat is small (their territory is usually no larger than a radius of three hundred metres around the nest), the quality of the immediate surroundings of the nest is crucial. A well-designed farmyard can make all the difference for the Little Owl. Do you share your farmyard with a Little Owl? Or do you see potential for this? Over the coming year, we will help you with an overview of practical adjustments you can make to create a more Little Owl-friendly farmyard.

Listen to the sound

When you think of the Little Owl, you think not only of its piercing gaze, but also of its characteristic call. That recognisable sound offers opportunities for research: it allows us to distinguish between single males, breeding pairs and fledglings that are still hanging around in their parents' territory. By validating recorded Little Owl sounds, we learn more about where the owls like to stay and where there are opportunities to improve the habitat quality for the species. In the *Year of the Little Owl*, we are asking for your help with this.

How the Blackbird's song fell silent

Many will remember how, from 2016 onwards, sick or dead Blackbirds were found in gardens, parks and forests throughout the Netherlands. According to reports to Sovon and the Dutch Wildlife Health Centre (DWHC) the number of dead blackbirds reported was more than ten times higher than in the years before 2016. Other songbirds seemed to be less severely affected.

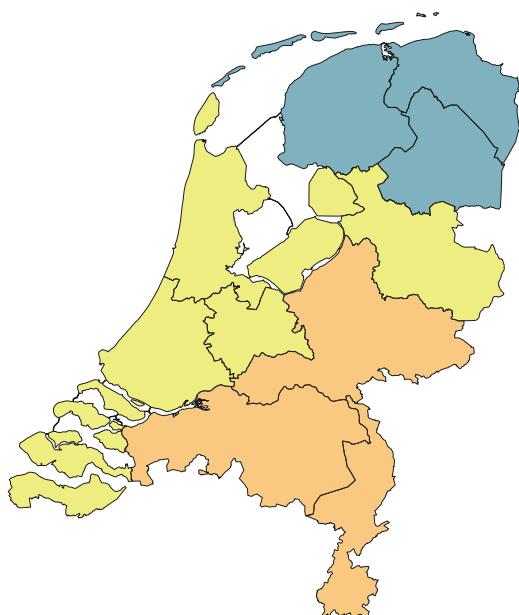

Illness and mortality among Blackbirds in 2016 was linked to the Usutu virus. This virus is transmitted by mosquitoes and originated in Africa. The virus probably arrived in Europe via migratory birds. Why were Blackbirds so severely affected? And were Blackbirds the only birds affected by this virus?

To answer these questions, the One Health PACT consortium was set up (onehealthpact.org). In this broad research programme, mosquito and bird experts, immunologists and epidemiologists worked together to gain understanding how a virus such as Usutu spreads and how this is related to changes in the environment and society.

Importance of reports of dead birds

Thanks to the many reports of dead birds, it was possible for the first time to map how the Usutu virus spread across the Netherlands. In 2016, it mainly appeared in the south-east of the country, after which it moved further north in 2017 and 2018.

It also appeared that temperature in winter and spring is an important predictor for the spread of the Usutu virus. Warm winters ensure that overwintering mosquitoes (mainly the common house mosquito) remain active and start reproducing early in the year, thus spreading the virus rapidly.

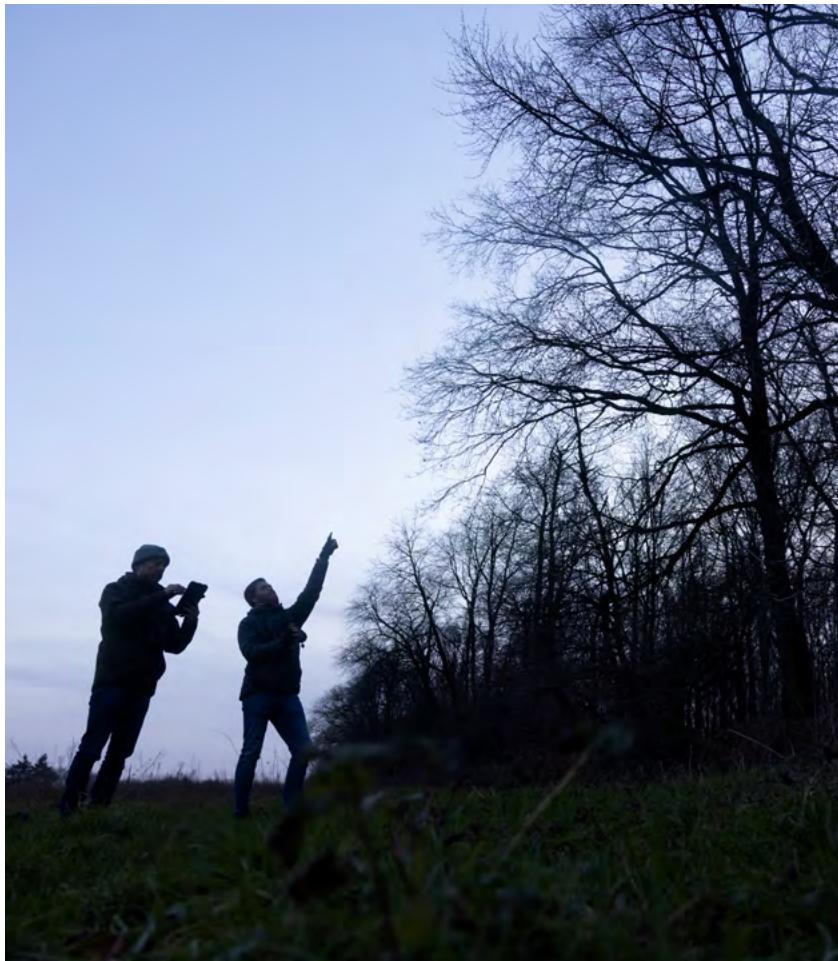

Population trends of the Blackbird in the Netherlands per region, with 2011 as the reference year (index=1). The solid lines show the average population index per region, with the standard error shown as the bandwidth around the average. The vertical dotted lines mark the year in which the Usutu virus was first detected in each region. The regions are divided into south-east (orange), central-west (green) and north (blue). In 2023, population indices in the mid-west and north regions were still 3 to 9% lower than in the reference year 2011.

Subsequently, higher temperatures in spring and summer accelerate the development of larvae, causing the population to grow even further later in the season.

A warm winter followed by a cold spring can actually slow down the development of larvae, resulting in a lower than expected number of mosquitoes. Temperature therefore not only influences the survival and development of mosquitoes, but also the speed at which the virus multiplies in the mosquito, and thus plays a central role in the spread cycle of the Usutu virus.

Impact on bird populations

An impact analysis, of which the results were published in 2025, showed that the number of Blackbirds in the Netherlands had declined by no less than 30% in 2023 compared to 2011 (see figure below). It also showed that Blackbirds were not the only birds affected by the virus: Song Thrushes, European Robins, Eurasian Wrens and Dunnocks also showed clear declines in the same areas of the Netherlands as Blackbirds. This indicates that these species are also likely to have been negatively affected by the Usutu virus.



Thank you for all your efforts

This State of Birds 2025 is only possible thanks to the efforts of thousands of volunteers. For years, they have been collecting valuable data by counting birds, ringing them and searching for nests. By collecting data in a structured and detailed manner, we are able to compare time series on a national and international scale. This information is crucial for nature policy decisions and for better protection of birds. They are the barometers of our biodiversity.

More than fifty years ago, in 1973, the fieldwork for the first atlas of Dutch breeding birds marked the start of Sovon. Since then, more and more birdwatchers have been contributing to mapping the distribution and changes in bird populations. This State of Birds shows only part of the knowledge that is available thanks to them. We are extremely grateful for the tireless efforts of volunteers, coordinators and validators, and for the cooperation of bird working groups, species working groups, researchers, institutes and site managers. Without them, the current status of Dutch birds would remain unknown.

> sovอน.nl/tellen

▲ Photo: Harvey van Diek

Sources

Scan the QR code to see the sources, or go to:
sovอน.nl/bronnen-vogelbalans-2025

About the State of Birds

The State of Birds is an annual publication by Sovon in which we provide insight into the status and trends of bird species. In addition to this State of Birds, we publish various reports each year in which we share the results of projects. These publications can be found at pub.sovอน.nl.

With the cooperation of: Chiel Boom, Loes van den Bremer, Harvey van Diek (photo editing), Bernice Goffin, Ruud Foppen, Jurrian van Irsel, Albert de Jong, Kees Koffijberg, Jip Louwe Kooijmans, Caroline van Oostveen (editor-in-chief and final editor), Roos Reinartz, Hans Schekkerman and Marcel Wortel.

Design: Laura Hondhorst

Data processing: Chiel Boom, Paul van Els, Ruud Foppen, Kees Koffijberg, Lara Marx en Erik van Winden (Sovon), Richard Verweij en Tom van der Meij (CBS).

Printing: Veldhuis Media

Cover photos: front Thijs Glastra; back Ruurd Jelle van der Leij

© Information from the State of Birds may be reproduced provided the source is acknowledged:

Sovon Dutch Centre for Field Ornithology. 2025. State of Birds in the Netherlands 2025. Sovon Dutch Centre for Field Ornithology.

p-ISSN 3050-8649
e-ISSN 3050-8657

Sovon Dutch Centre for Field Ornithology
PO Box 6521, 6503 GA Nijmegen
Telephone: 024 7 410 410
E-mail: info@sovอน.nl

> sovอน.nl/vogelbalans

The state of the birds

In the State of Birds, Sovon lists the most important current developments. Which species are increasing in number and which are becoming less common? Thanks to more than 50 years of counts and research by many volunteers and professionals, we can make statements about the trends of 200 species of breeding birds and 204 migratory and wintering bird species. Knowledge about the possible causes behind these changes is also explained.

The 2025 edition focuses on a number of striking and current developments. For example, population developments of certain species at the Dutch level are compared with those at the European level. Three particularly long series of counts in different areas of our country are highlighted and discussed. How have bird populations changed there and what factors have influenced this? Every three years, the entire East Atlantic flyway is monitored, an enormous effort involving tens of thousands of volunteers in 35 countries. One species that also uses this flyway is the Barnacle Goose. Based on two studies, we discuss new insights into this species. In short, a State of Birds full of relevant information. After all, birds remain important indicators of our relationship with nature.

